Production Matrices and Riordan Arrays
نویسندگان
چکیده
منابع مشابه
Generalized Riordan arrays
In this paper, we generalize the concept of Riordan array. A generalized Riordan array with respect to cn is an infinite, lower triangular array determined by the pair (g(t), f(t)) and has the generic element dn,k = [t/cn]g(t)(f(t))/ck, where cn is a fixed sequence of non-zero constants with c0 = 1. We demonstrate that the generalized Riordan arrays have similar properties to those of the class...
متن کاملComplementary Riordan arrays
Recently, the concept of the complementary array of a Riordan array (or recursive matrix) has been introduced. Here we generalize the concept and distinguish between dual and complementary arrays. We show a number of properties of these arrays, how they are computed and their relation with inversion. Finally, we use them to find explicit formulas for the elements of many recursive matrices.
متن کاملPell Walks and Riordan Matrices
The purpose of this paper is twofold. As the first goal, we show that three different classes of random walks are counted by the Pell numbers. The calculations are done using a convenient technique that involves the Riordan group. This leads to the second goal, which is to demonstrate this convenient technique. We also construct bijections among Pell, certain Motzkin, and certain Schröder walks...
متن کاملSequence characterization of Riordan arrays
In the realm of the Riordan group, we consider the characterization of Riordan arrays by means of the Aand Z-sequences. It corresponds to a horizontal construction of a Riordan array, whereas the traditional approach is through column generating functions. We show how the Aand Z-sequences of the product of two Riordan arrays are derived from those of the two factors; similar results are obtaine...
متن کاملMatrix Characterizations of Riordan Arrays
Here we discuss two matrix characterizations of Riordan arrays, P -matrix characterization and A-matrix characterization. P -matrix is an extension of the Stieltjes matrix defined in [25] and the production matrix defined in [7]. By modifying the marked succession rule introduced in [18], a combinatorial interpretation of the P -matrix is given. The P -matrix characterizations of some subgroups...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annals of Combinatorics
سال: 2009
ISSN: 0218-0006,0219-3094
DOI: 10.1007/s00026-009-0013-1